Weiqiang Wang 1,2,5,*Wenfu Zhang 1,6,*Zhizhou Lu 1,2Sai T. Chu 3[ ... ]Wei Zhao 1
Author Affiliations
Abstract
1 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
4 School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
5 e-mail: wwq@opt.ac.cn
6 e-mail: wfuzhang@opt.ac.cn
Dual combs are an emerging tool to obtain unprecedented resolution, high sensitivity, ultrahigh accuracy, broad bandwidth, and ultrafast data updating rate in the fields of molecular spectroscopy, optical metrology, as well as optical frequency synthesis. The recent progress in chip-based microcombs has promoted the on-chip dual-comb measuring systems to a new phase attributed to the large frequency spacing and broad spectrum. In this paper, we demonstrate proof-of-concept dual-comb generation with orthogonal polarization in a single microresonator through pumping both the transverse-electric (TE) and transverse-magnetic (TM) modes simultaneously. The two orthogonal polarized pumps are self-oscillating in a fiber ring cavity. The generated dual comb exhibits excellent stability due to the intrinsic feedback mechanism of the self-locked scheme. The repetition rate of the two orthogonal combs is slightly different because of the mode spacing difference between the TE and TM modes. Such orthogonal polarized dual-combs could be a new comb source for out-of-lab applications in the fields of integrated spectroscopy, ranging measurement, optical frequency synthesis, and microwave comb generation.
Nonlinear optics, four-wave mixing Nonlinear optics, integrated optics Microcavities Kerr effect 
Photonics Research
2018, 6(5): 05000363
作者单位
摘要
1 昆明物理研究所,云南 昆明 650223
2 北方红外技术股份有限公司,云南 昆明 650217
对基于三坐标测量机的大口径红外透镜曲率半径检测方法进行了研究。首先简要阐述了三坐标测量机测量透镜曲率半径的原理,然后根据此原理应用误差理论推导出该方法测量透镜曲率半径时的标准差估计公式,并进行了相关验证实验。实验结果证明该测量标准差估计公式正确,并据此对三坐标测量机测量曲率半径的测量范围以及测量精度进行分析。研究结果表明:由于测量精度随着球冠包角θ值的增大而迅速减小,使得该方法较适用于测量球冠包角θ值较大的大口径透镜。
光学检测 曲率半径测量 三坐标测量机 最小二乘法 测量标准差 optical test curvature radius measurement CMM the least square method the standard deviation of measurement 
红外技术
2018, 40(4): 338
Author Affiliations
Abstract
A compact static infrared broadband snapshot imaging spectrometer (IBSIS) is presented. It consists of a telescope, three prisms, a focusing lens, and a detector. The first prism disperses sharply in the near-infrared (NIR) range along the vertical direction, and it is relatively non-dispersive in the mid-wave infrared (MWIR) range. The second prism is substantially more dispersive in the MWIR range than in the NIR range along the horizontal direction. The beam deviation caused by the first and second prisms can be controlled by the third prism. The IBSIS yields a two-dimensional dispersion pattern (TDP). The formulas and numerical simulation of the TDP are presented. The methods of target location calculation and spectral signature extraction are described. The IBSIS can locate multiple targets using only one frame of data, which allows for real-time detection and measurement of the energetic targets.
120.6200 Spectrometers and spectroscopic instrumentation 300.6190 Spectrometers 120.4640 Optical instruments 230.5480 Prisms 
Chinese Optics Letters
2014, 12(3): 031201
Author Affiliations
Abstract
A conceptual dispersion imaging spectrometer (DIS) is proposed. It consists of a telescope, four prisms, an imaging lens, and a detector. The first prism allows only the first set of wavelengths along the first direction to pass and disperse. The second prism allows only the second set of wavelengths along the second direction, which is perpendicular to the first. The third and fourth prisms are used to compensate for the angular deviations from the optical axes of the first and second prisms, respectively. The proposed DIS disperses the spectra of a target to form an L-shaped dispersion pattern (LDP). The theoretical calculation and numerical simulation of the LDP are presented. The DIS can locate multiple targets based only on data obtained from a single frame. It is suitable for detecting and locating energetic targets in real time.
120.6200 Spectrometers and spectroscopic instrumentation 230.5480 Prisms 300.6190 Spectrometers 120.4640 Optical instruments 
Chinese Optics Letters
2013, 11(6): 061202
Author Affiliations
Abstract
A compact moving optical-wedge interferometer (CMOWI) is presented. This device consists of a moving optical wedge (MOW), a fixed optical wedge (FOW), a fixed compensating plate, and a beam-splitting cube. The optical path difference (OPD) is calculated and analyzed. The factor between the OPD and the displacement of the MOW is less than 1 if the refractive index and wedge angle of the MOW and FOW are chosen properly. Therefore, the CMOWI is insensitive to scanning speed variations compared with the traditional Michelson interferometer. The CMOWI is compact, small-sized, and suitable for low-resolution Fourier transform spectroscopy.
120.3180 Interferometry 260.3160 Interference 120.6200 Spectrometers and spectroscopic instrumentation 300.6190 Spectrometers 
Chinese Optics Letters
2013, 11(2): 021202
Author Affiliations
Abstract
1 Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119
2 Graduate University of Chinese Academy of Sciences, Beijing 100039
A novel lens system with correction of secondary spectrum without using anomalous glasses is presented. The lens system comprises four separated lens components, with three of them being subapertures. Two examples of apochromatic telescope are presented, both with the use of typical normal glasses, namely crown K9 and flint F5 glasses, and low-cost slightly anomalous dispersion glasses. Secondary spectrum and other chromatic aberrations of the two design examples are corrected.
复消色差透镜 二级光谱 望远镜 非异常色散玻璃 220.3620 Lens system design 080.1010 Aberrations (global) 110.6770 Telescopes 160.2750 Glass and other amorphous materials 
Chinese Optics Letters
2008, 6(2): 02146

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!